

Lecture 07 - HIGH-SPEED

Advanced Layout: High-Speed

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

Outline

- Introduction
- High-Frequency routing
- PCBs for Planar Microwave Devices
- Examples

Signals are merely useful, semiperiodic waveforms that we

High-Frequency Signals

periodic waveforms that we represent as changing voltage potentials or currents.

Examples include:

Definition

- Analog sensor outputs
- Digital communications
- Radio signals
- Output of an on/off switch

https://www.monolithicpower.com/en/analog-vs-digital-sign

@ MIT

High-Frequency Signals Definition

For simplicity, we can represent all signals as simple sinusoidal waves of current that produce electric and magnetic fields on our PCB

High-Frequency Routing Microstrip

Using Ansys HFSS to analyze how high-frequency signals are affected by PCB design elements

Taking a look at a microstrip model, consists of:

- Copper trace
- Dielectric (FR408HR used)
- Copper ground plane

Lumped element ports are attached to either end of the trace

High-Frequency Routing Microstrip

https://www.signalintegrityjournal.com/articles/2378-measuring-the-bulkdielectric-constant-dk-on-a-microstrip-with-a-tdr

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

High-Frequency Routing

Microstrip

THE ART SCIENCE PCB DESIGN

Electric fields radiate around trace IAP 2025

We can inject high-frequency signals on either end/port on the trace and measure how they are affected:

- Signal degradation
- Coupling
- Radiation
- Reflections

Able to visualize electric fields throughout materials (analogous to the current flow)

High-Frequency Routing

Microstrip

Electric field plotted on trace (2.4GHz source)

IAP 2025 Signal Loss (dB) vs. Frequency

High-Frequency Routing Impedance Matching

For a microstrip, impedance can be adjusted by changing the trace width. The ports are 50Ω terminated. Matching the trace impedance close to 50Ω will result in

lower loss.

@ MIT

High-Frequency Routing

Impedance Matching

The currently modelled trace has a very high impedance (> 50Ω). Therefore, widening it provides a better impedance match.

Impedance characteristics for a microstrip are affected by:

- Trace width
- Trace thickness
- Dielectric height
- Dielectric Constant (Dk, Er)

High-Frequency Routing Coupling

What happens if we put another trace in parallel?

High-Frequency Routing Coupling

Notice how the electric fields propagating through the air around the excited (left) trace reaches the parallel (right) trace and induces internal fields

A smaller, measurable copy of the signal is being coupled to the other trace

This can become a big issue for sensitive systems

High-Frequency Routing Coupling

High-Frequency Routing Mitigating Coupling

Coupling can adversely affect our signals.

At best, the coupled signals increase noise in our signal. At worse, they appear as valid signals at a receiving device (crosstalk)

We can reduce coupling by avoiding parallel signal traces (i.e., have them cross perpendicularly on different layers)

Increasing the separation between traces can also help

High-Frequency Routing

Mitigating Coupling

- Increasing the distance between parallel traces will weaken coupling fields (inversely proportional to distance)
- For differential traces, this coupling is utilized to maintain a particular differential impedance
- Ensure to follow impedance requirements for differential signal trace pairs

High-Frequency Routing

Mitigating Coupling

Add a ground trace/pour/via-fence between

Radiated fields couple to the return path (GND)

AND

PCBDESIGN

IAP 2025

High-Frequency Routing Mitigating Coupling

High-Frequency Routing

Microstrip Bends

Impedance mismatches can occur at abrupt discontinuities in a trace, such as sharp (90 degree) bends

The bend itself can resonate and have its own (different) impedance from the rest of the microstrip

The result is signal reflections, radiation, and degradations!

High-Frequency Routing Microstrip bends

High-Frequency Routing

Microstrip Bends

Solution: smooth, wide bends

THE

SCIENCE PCB DESIGN

IAP 2025

High-Frequency Routing Microstrip Bends

Even field distribution throughout bend

Smooth, weaker near-field radiation patterns

High-Frequency Routing Key Takeaways

- As signals reach greater frequencies, their wavelengths decrease, which results causes greater susceptibility to wave phenomenon and parasitic circuit elements
- □ Impedance mismatches between traces, discontinuities, and devices can lead to signal degradation, reflection, and radiation, which we can simulate
- Use appropriate high-frequency PCB structures (e.g., microstrip, coplanar waveguide) when impedance matching is needed
- Close, parallel traces can couple to one another, use appropriate spacing, ground pours, and via fences to reduce coupling
- Sharp trace turns can cause impedance mismatches, use smooth bends instead

Examples

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

Examples 24 GHz Radar

Phased Array!

https://www.analog.com/en/design-center/evaluation-hardware-andsoftware/evaluation-boards-kits/eval-tinyrad.html#eb-overview

@ MIT

https://www.analog.com/en/design-center/evaluation-hardware-andsoftware/evaluation-boards-kits/EVAL-HMC994APM5.html#eb-overview

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

Planar Microwave Devices

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

Planar Microwave Devices

RF Passive Components

THE ART SCIENCE PCB DESIGN IAP 2025

We can use PCBs to create passive microwave components

PCBs offer a cheaper medium for microwave device fabrication

Also allows for greater integration of an RF system onto a single board

Microstrip Resonators Open-Circuit Stub

A resonator can be created using a length of microstrip and a termination

In this case, an open-circuit stub can be added ٠

Acts like a shunt capacitor when its length is small

Microstrip resonators

Different stub lengths and terminations can create different LC combinations

We can utilize this effect to create filters

https://electronics.stackexchange.com/questions/460101/deriving-microstripstub-equations

@ MIT

L-Band Stub Low Pass Filter

Frequency (GHz)

Microstrip Devices S-Band Coupled Line Band Pass Filter

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

2.4 GHz BPF S21 Simulated (red) vs. Measured (blue)

S-Band Directional Coupler

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu

Frequency (GHz)

Same principle as the coupling microstrips!

@ MIT

Patch Antennas

Recall how the microstrip has fringing fields?

We can use the fringing fields to radiate power → Microstrip Antenna!

AND

Patch Antennas

Creating a resonating wave in the microstrip patch results in changing fringing fields

Fringing fields form a far-field radiation pattern

Patch Antenna Arrays

IAP 2025

https://www.researchgate.net/figure/Series-fed-patch-antenna-array-for-60-GHz-Both-developed-antenna-arrays-have-minimum_fig4_267718251

https://www.qwed.eu/QuickWave/help/qwodeller_examples_guide/15_rectangular_patch_antenna_8x8_arra

Integrated Microwave Assemblies

MIT

ttps://www.researchgate.net/figure/mage-of-the-radar-system-The-PCB-ontop-is-the-RF-frontend-which-holds-the-RF fig2 313686839

https://www.viasion.com/radar-pcb

Lecture 07 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu