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High-Frequency Signals SO

Definition TAIEEE
IAP 2026

Signals are merely useful, semi-
periodic waveforms that we
represent as changing voltage

potentials or currents. Amplitude

Examples include: $

« Analog sensor outputs

« Digital communications

« Radio signals = Time

* Output of an on/off switch
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High-Frequency Signals S
’L'IDESHGN
IAP 2026

For simplicity, we can represent all signals as simple sinusoidal waves of
current that produce electric and magnetic fields on our PCB

Amplitude |<

Definition

Wavelength

Amplitude

(Fourier
decomposition allows
us to do this)

Tlme

Trough D

If 1 second, freq. =1 Hz
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High-Frequency Routing SO
Microstrip i

Using Ansys HFSS to analyze how
high-frequency signals are
affected by PCB design elements

Taking a look at a microstrip
model, consists of:

 Copper trace
» Dielectric (FR408HR used)
« Copper ground plane

Lumped element ports are
attached to either end of the
trace
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High-Frequency Routing SR
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Microstrip
IAP 2026
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High-Frequency Routing

Microstrip

We can inject high-frequency
signals on either end/port on the
trace and measure how they are
affected:

» Signal degradation
« Coupling

- Radiation

* Reflections

Able to visualize electric fields
throughout materials (analogous
to the current flow)
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Electric fields radiate around trace zapp2028

T
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High-Frequency Routing
Microstrip

Electric field plotted on trace (2.4GHz source)
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IAP 2026
Signal Loss (dB) vs. Frequency
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High-Frequency Routing

Impedance Matching
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For a microstrip,
impedance can be
adjusted by
changing the trace
width.

The ports are 50Q
terminated.
Matching the trace
impedance close to
50Q will result in
lower loss.
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High-Frequency Routing SO

P poEsIoN
IAP 2026

I m ped a n Ce M atCh i n g ParametriclnsertionLoss SingleMicrostrip Ag}gyg

STUDENT

0.0 ===
The currently modelled trace ]
has a very high impedance
(>50Q). Therefore, widening it )
provides a better impedance 0]
m atc h . 2 %W:ei(':sg& :::1 _T2,Trace1_T1))
- = E— . “z;(os.f;'l]'ll];cm _T2Tracel_T1)) 1 '5 mm
Impedance characteristics for |- o A 1.25 mm
a microstrip are affected by: ;] i 1 mm
* Trace Width -2.0__ E.aIICSET‘Ee:B?:.SfS(ST‘r:':i:1 T2 Tracel_T1))
: ‘ e e 0.75 mm
« Trace thickness .
-2.5
* Dielectric height ] 0.5 mm
* Dielectric Constant (Dk, Er) P Y A
0.0 05 1.b 15 20 2.% 3.0

Freq [GHz] M/f
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High-Frequency Routing SR

. ’L'[DIESHGN
Coupling IAP 2026
What happens if we put another trace in parallel?
!
):)9*‘“1

0 4 8 (mm)
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High-Frequency Routing SR

) ’L'IDIESHGINI
Coupling IAP 2026

Notice how the electric
fields propagating through
the air around the excited
(left) trace reaches the
parallel (right) trace and
induces internal fields

A smaller, measurable
copy of the signal is being
coupled to the other trace

This can become a big
issue for sensitive
systems
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High-Frequency Routing
Coupling
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dB{St(Tracel T1,Trace2 T1))
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Greater coupling factors means
greater power transfer between

Increases with frequency
(greater radiation)
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High-Frequency Routing

Mitigating Coupling

Coupling can adversely affect our
signals.

At best, the coupled signals increase
noise in our signal. At worse, they
appear as valid signals at a receiving
device (crosstalk)

We can reduce coupling by avoiding
parallel signal traces (i.e., have them
cross perpendicularly on different
layers)

Increasing the separation between
traces can also help
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High-Frequency Routing

Mitigating Coupling

Increasing the distance between
parallel traces will weaken coupling
fields (inversely proportional to
distance)

For differential traces, this coupling
is utilized to maintain a particular
differential impedance

* Ensure to follow impedance
requirements for differential
signal trace pairs

Lecture 08 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbsemmceua

THEA!TEE
SCIENCE
’L'[DIESHGINI

dB(St(Tracel T1 Trace2 T1))
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What if we are area-
constrained and
cannot increase

trace spacing?
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FullSweep : Sweep

trace1 _2G="mm"

—— dB(St{Trace1_T1,Trace2_T1))
FullSweep : Sweep
tracel_2G="2mm'

= dB(St{Trace1 _T1 Trace2_T1))

FullSweep : Sweep
tracel_2G="3mm'

dB(St(Trace1_T1 Trace2_T1))
FullSweep : Sweep
trace1 _2G="4mm"
= dB(St{Trace1 _T1 Trace2_T1))
FullSweep : Sweep
trace1_2G="Smm’

T T T
0.0

Freq [GHz]

ok b T T T T

2h T T T T T s @M/f


http://pcb.mit.edu
mailto:yaypcbs@mit.edu

High-Frequency Routing SO

DESIGN
Mitigating Coupling Radiated fields couple to the PCs
return path (GND) IAP 2026

Add a ground trace/pour/via-fence between
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High-Frequency Routing SO
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Mitigating Coupling IAP 2026

CouplingFactor CouplingFactor

Ansys
CoupledMicrostrips AE‘.S:YRSZ ShieldedCoupledMicrostrips 202¥R2
STUDENT STUDENT

eeeeeeeeeeeeee

>20 dB (100x)

@ improvement!

2mm gap, ho
ground/via
shielding

eeeeeeeeeeeeee

.
S
1

.
=]
|

2mm gap, with
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shielding

dB(St(Trace2 T1 Tracel T1))
2
|

dB(St(Trace2 T1 Tracel T1))
@
[=]
|

&
=}
1

-80

Adding ground pours/planes are
easy methods for improving signal ——————F——1———
integrity —

-100 L e e L e e e e e |
0.0 05 10 15
Freq [G
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High-Frequency Routing SO
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Microstrip Bends
IAP 2026

Impedance mismatches can
occur at abrupt discontinuities in
a trace, such as sharp (90
degree) bends

The bend itself can resonate and
have its own (different)
impedance from the rest of the
microstrip

The result is signal reflections,
radiation, and degradations!

8 (mm)
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High-Frequency Routing

Microstrip bends
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High-Frequency Routing

Microstrip Bends

Solution: smooth, wide bends
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High-Frequency Routing SO
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Microstrip Bends
IAP 2026

]
4 8 (mm)

Even field distribution throughout bend  Smooth, weaker near-field radiation

patterns M/f
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High-Frequency Fabrication chEﬁiTzf
Surface Finish pLRoN
IAP 2026

—Copper
—Solder mask
—ENIG
—Immersion silver

.................................................................................

§21(dB)

Soldermask = dielectric
causes dissipation

Metal surface finishes =2
conductor losses

_ | | i i
30 2 4 6 8 10 12 14 16 18

Frequency(GHz) H. He and R. Tang, “Effect of Permittivity and Dissipation Factor of
Solder Mask upon Measured Loss,” Las Vegas, Mar. 2016. @ M/f
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High-Frequency Fabrication SO

Surface Finish PLRO'eN

IAP 2026
| | |  [~=copper Soldermask adds additional
1,751 s e s S S == Solder mask permittivity = expect greater group
I delay
17 oo rrrrrrrrrrrrrrrr rrrrrrrrrrrr __; Immer5|:on silver

2165 ENIG contains large nickel layer -

g | | f f f 3 f nickel has high permeability at low

< 10 frequencies = expect varying group

S

U]

\\
1.5/

1.45

1.4

Frequency(GHz)

Figure 6 - S21 and delay measurements for 8.265 inch traces with different surface finishes

(above: S21; below: group delay ) H. He and R. Tang, “Effect of Permittivity and Dissipation Factor of

Solder Mask upon Measured Loss,” Las Vegas, Mar. 2016. M/f
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High-Frequency Fabrication scT;chzf
Surface Finish pLRoN

IAP 2026
100 IG (>0.030 um)
80 NICKEL
oo EP (0.05 —0.30 um) IG (>0.05 um)
| ol EN (3 —6 um) EN (3 -6 um)
40
[ ]
§ 20 7 < Substrate (FR-4) Substrate (FR-4)
> e
3 \ \E{‘\+ ENEPIG ENIG
f b = T~ - Fig. 2. Schematic of layer configurations of ENEPIG, ENIG, and Ni/Au board finishes.
T — Rl
= i i B=R{ A
a - \\ +N M. Ratzker, A. Pearl, M. Osterman, M. Pecht, and G. Milad, “Review
4 G c\ of Capabilities of the ENEPIG Surface Finish,” J Electron Mater, vol.
- ] 43, no. 11, pp. 3885-3897, Nov. 2014, doi: 10.1007/s11664-014-
A W
N \ 3322-z.
2 BE
\‘\Q. \+ 2p
Ie 108 2 4 6 8449 T 4 6 B8 ygl0 2 3 — 1

FREQUENCY [Hz]

o

S. Lucyszyn, “Microwave Characterization of Nickel,” PIERS Online,
vol. 4, no. 6, pp. 686-690, 2008, doi: 10.2529/PIERS080119215655. @ M/]’

Figure 1: Measured frequency characteristics of initial permeability for nickel [10].
(+ Arkadiew [11], V Simon [12], A Hodsman et al. [13])
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High-Frequency Fabrication
Substrate

khart 3: Normalized Dk vs. Frequency using microstrip differential phase length method 50 ohm mi-
crostrip circuits based on ~20mil thick laminates

1.05
106 S
1.03 T
= =
g 102 T —— RO3003™ laminate
p I . = RO3035 " laminate
g ROZ00&8 laminate
g — ROZ010™ laminate

— High Peiffarmance FR-4

i 10 S50
Frequency (GHZ)

Rogers Corporation
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High-Frequency Fabrication
Substrate

Chart 1: RO3003 and RO3035 Laminate Dielectric Constant vs. Temperature

—a#—PTFE/WG
=—i—RO32003
== RO3I035

-50 -25 o 25 =0 75 100 125 150

Rogers Corporation
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High-Frequency Routing SO
’L'DESHGN

Key Takeaways IAP 2026

U As signals reach greater frequencies, their wavelengths decrease, which
results causes greater susceptibility to wave phenomenon and parasitic
circuit elements

O Impedance mismatches between traces, discontinuities, and devices can
lead to signal degradation, reflection, and radiation, which we can simulate

U Use appropriate high-frequency PCB structures (e.g., microstrip, coplanar
waveguide) when impedance matching is needed

O Close, parallel traces can couple to one another, use appropriate spacing,
ground pours, and via fences to reduce coupling

O Sharp trace turns can cause impedance mismatches, use smooth bends
instead
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Examples
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Examples
24 GHz Radar
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Examples AT
28 GHz Amplifier :

.l"l'i.l-pC‘

99A
Zr r“"""1lﬂ

Y A3¥ SE8650-80 -
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Planar Microwave Devices SO
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RF Passive Components
IAP 2026

Tx Subsection
. i | | — ] We can use PCBs to
Po%ﬁ D - = TR - - . =
51=C\W: 1200 MHz 3t -10 dBm < ‘ | T ] ‘ create paSS“Ie
Z":{f:;:aia:“ Z"Eéé{ig;igz‘ﬁ P — microwave components
' et x
Frequency Doubler 20 5 PCBs offer a cheaper
| medium for microwave
- device fabrication
ZX05 43MH97240CIMHZI
| nea 2w zowrs
I ! | lo-f3aem Also allows for greater
: : i | ! LPF_Butter_1 H =
i IS | ] ey integration of an RF
1 : BFF_Bulter ZX60_272LN_Sp2 ‘I FPase 200N system OntO a Single
R i e IL;E SdEI Ni::1141daaa1$n ~
i " o o 1 board
Rx Subsection
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Microstrip Resonators SO

Open-Circuit Stub PC BN
IAP 2026

A resonator can be created using a length of microstrip and a termination

Port2

(a) (b)

In this case, an open-circuit stub can be added
Acts like a shunt capacitor when its length is small
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Microstrip resonators SUIENCE
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Filters TP 2026

Different stub lengths and terminations can
create different LC combinations

short circuited stub

(length = /%) We can utilize this effect to create filters

open circuited stub short circuited stub open circuited stub

(length < h/4) (length < A/4) (length = A/4)

2 c2
[=12.889792 nH
Relei2Om)  CooiosesTE

P1

MNum=1 -

L1 —-C1
= | [iessamonm C=1.966320 pF
—— R=1e-12 Ohm 1

T

=

“ﬂ ”
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Microstrip Devices siféﬁi’é’f

1.3 GHz LPF S21 Simulated (red) vs. Measured (blue) ’L'IDIESIGN

L-Band Stub Low Pass Filter ws ] —
-10 \ \ / IAP 2026

N

E Fleld m
(Vim) STUDENT

oA™Y

1 ik

Insertion Loss (dB)
5
Il
[
T
—~—

-70 TT T T [T T T T [T T T T [T T T T[T T T T[T T T T [T T T T[T T TT [ TTT

0.0 0.5 1.0 1.5 20 25 3.0 35 40 44

i

‘oh~

Frequency (GHz)
; & % i 1.3 GHz LPF S11 Simulated (red) vs. Measured (blue)

10 N / Y
_zolfﬁ/\/\ AN

Return Loss (dB)

10 e e e

0.0 0.5 1.0 1.5 20 25 3.0 35 40 44

Frequency (GHz) M/]’
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Microstrip Devices
S-Band Coupled Line Band Pass Filter
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Microstrip Devices AR
S = Ba n d D i re Cti ona I C ou p I er Directional Coupler Coupling Simulated (red) vs. Measured (blue) ’L' PESIGN

5

s IAP 2026
-10—
| acxen?vs 5 o G .g::::;v& - . & 15—
—1 1 - . o
—J | S ~
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: L LR S
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£ 30
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e
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Microstrip Devices S
’L'IDESHGN
IAP 2026

Patch Antennas

Recall how the microstrip has

frinaing fields? We can use the fringing fields to radiate
ringing fields?

power - Microstrip Antenna!

E-fielld ~ --eoeee- H-field o
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Microstrip Devices S
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IAP 2026

Patch Antennas

Creating a resonating wave in the microstrip

patch results in changing fringing fields o ] L
Fringing fields form a far-field radiation pattern

Ansys nc Gain Plot 1 Ansys
zzzzz
uuuuuuu

a8(GanTotal)
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Microstrip Devices siféﬁi’é’f

’c' DESIGN

Patch Antenna Arrays
IAP 2026

2 Dispay | 42 show | @ Stucre | 47 Exportfmport | ¥ Antenna Array

o

Beam Vector

Y

References Axis: Z

Step Theta [degl 1
Theta From [deg]:  0.00
Theta To [deg]: 180.00
Step Phi [deg]: 1
PhiFrom [degl  0.00

Phi To [deg]: 360.00
Frequency [GHzl 305
tterations: 5000
Scale: LINAUTO
Gain Ref.: Directive
s -1.0000
EfWMM00%]  0.00

Component(s;
Ground plane:
Tasker Name: paarray8x8_0_0ta3

ETHETAZEPHI
o

s

ETHETA &EPHI Fr=30.5 [GHz] [S11]=-1.0000 Ef=0.00 Scale: LIN Ref.Axis: Z Theta=1 Phi=1 It=5000 Name: paarray8x8_0_0 1/1

Lecture 08 - Advanced Layout: High Speed | pcb.mit.edu | yaypcbs@mit.edu @M/f


http://pcb.mit.edu
mailto:yaypcbs@mit.edu

Integrated Microwave Assemblies SUEASE
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