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Examples of high-power circuits

Power converters

• High voltage and/or high current

Computers

• Low voltage, high current
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Our goal:
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Don’t blow anything up!



High-Voltage 
Considerations
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Nodes in a circuit are separated by insulators

• Insulators block voltage and 
prevent unwanted current 
from flowing…

• Until they reach their limit and 
undergo dielectric breakdown

• Breakdown occurs when 
electric field exceeds material’s 
dielectric strength
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Common PCB Insulators Dielectric Strength (kV/mm)

Air 3

FR4 20

Solder mask > 20

Kapton (polyimide) tape 300

Uncommon PCB Insulators Dielectric Strength (kV/mm)

Diamond 2000



Add space around high-voltage nets to avoid 
breakdown
• Two types of spacing requirements: clearance and creepage

• Clearance is distance “in air” between two nets

• Creepage is shortest distance along insulating surface (e.g. the PCB)
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Effective creepage 
distance

https://blog.samtec.com/wp-content/uploads/2019/04/Clearance-and-Creepage-Dave-Scopelliti.pdf



Clearance

• Refers to space in air between two 
exposed nets

• In PCB design rules, also refers to 
spacing between two conductors (even 
if they’re covered in an insulator)
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Clearance Standards

• Standards (e.g. IPC 2221) provide PCB spacing requirements

• Various calculator tools to compute required spacing (links below)
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Different standards give 
(dramatically) different guidelines

https://resources.altium.com/p/using-an-ipc-2221-calculator-for-high-voltage-design
https://saturnpcb.com/saturn-pcb-toolkit/
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Creepage

• Distance on surface between two nets

• If surface becomes “polluted,” its resistance 
can decrease, making it easier for electrical 
breakdown to occur

• Types of pollution:
• Environmental (from exposure to the elements)

• Carbonization (from circuit operation)
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Effective creepage 
distance



Environmental Pollution Classes
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https://www.ti.com/lit/ml/slup421/slup421.pdf?ts=1768806046330

https://www.ti.com/lit/ml/slup421/slup421.pdf?ts=1768806046330


Example Creepage Table
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https://www.ema-eda.com/ema-resources/blog/pcb-clearance-and-creepage-distance-table/ 

voltage
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degree

Creepage 
requirements 
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with…
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Board carbonization

• Carbonization is the formation of a conductive layer of carbon on PCB 
when it is burnt

• Tracking is when unwanted current flows along carbonized paths

• Two mechanisms of carbonization to consider:
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Full discharge (not enough clearance) Partial discharge (corona)

https://blog.samtec.com/wp-content/uploads/2019/04/Clearance-and-Creepage-Dave-Scopelliti.pdf



Minimizing tracking: board cutouts

14
Mihir Shevgaonkar, Voltage Multiplier Rectifier, MIT 2024

Board cutouts
increase creepage

https://blog.samtec.com/wp-content/uploads/2019/04/Clearance-and-Creepage-Dave-Scopelliti.pdf



Minimizing corona: avoid sharp corners

• Sharp corners concentrate 
electric field, causing corona
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• Instead, choose rounded 
traces and pads

Bad corner design Bad pad design

Good corner design Good pad design



Other manufacturing techniques

Conformal coating
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https://www.hanastglue.com/products/potting-adhesive/1-1-Silicone-potting-compound/hn-8806-hdsxjg.html

Potting
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High-Current 
Considerations
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High current causes temperature rise
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Everything has resistance (even copper)!

Power dissipated in resistance

Temperature rise due to power dissipated

Thermal resistance (°C/W)



What is thermal resistance?

• Linearly relates temperature rise to dissipated power

• Units: °C/W

• Given by manufacturer

• Part of a “thermal circuit” model
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Thermal Circuit Model

• Acts like electrical circuit model, but represents thermal behavior

20

linear system

Classic EE
move!



How can we use this thermal model?

• Calculate minimum size for traces and vias

• Calculate temperature rise in components
• Choose an appropriate component

• Figure out how to cool it
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Choose trace size based on current
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Increase conductor cross-sectional area

Increase area by:
- Increasing trace width (layout)
- Increasing copper thickness (manufacturing)

To decrease resistance…



Trace width example

• Given:
• 10 A current

• 20°C temperature rise

• Calculate: 250 sq. mil area
• 1 oz/ft2 copper: 200mil trace width

• 2 oz/ft2 copper: 100mil trace width

• Internal traces require more area 
since they don’t dissipate heat as 
easily
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Find cross-
sectional area

For given area 
and copper 
weight…

Find trace width

https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf



What if we want even more conductor area?

• Ultra-thick copper (10oz, 20oz)

• Copper busbars

• Mounted wires

24

Neugebauer, MIT



AC current considerations

• Previous slides considered dc/low-frequency current

• At higher frequencies, current is not distributed evenly throughout 
conductor due to “skin effect”

• Current effectively only flows within one “skin depth” of surface, so 
loss increases with frequency
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Vias for high-current paths

• Use parallel vias to get a high-current trace to another layer

• Calculators give each via’s current-carrying capacity
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Protoexpress Designer Tools

https://designertools.app.protoexpress.com/?appid=VCCWCAL&data=ONsTAS5bIR5nFHqIuoQIEqpeYI6FNtC1kNPK9gKk14INuL5nZePBvOxvbHPnk5%20cnHE%20LdwaQf3NPMrsZsHzKD%20%2FM7rjI1AL7TaRuIf%20k%2FaLF5w5yX8NdWEca2p4jr%2Fqd%2F3jiCq2vt109mcdP9itFqb25bcJfU80I08FAEkspybHJoOJbTfc%2FCoK4ZEe1vozrLfjq9Dfs2X42lXYJUnGyJi%20eJFcIvDOZINfUJtZF81UttQPqGh3kPEVQTVWItcA67vr3TNP%20WeEN22%20bXT7AER4Z2z2hsmst3QN4FxVwxvTJQoSn0PzSIu7GDixipPk0cwhm3SBk3Vu9L4HLMaXYQ%3D%3D&q=Mon%20Jan%2019%2018:05:39%20PST%202026
https://designertools.app.protoexpress.com/?appid=VCCWCAL&data=ONsTAS5bIR5nFHqIuoQIEqpeYI6FNtC1kNPK9gKk14INuL5nZePBvOxvbHPnk5%20cnHE%20LdwaQf3NPMrsZsHzKD%20%2FM7rjI1AL7TaRuIf%20k%2FaLF5w5yX8NdWEca2p4jr%2Fqd%2F3jiCq2vt109mcdP9itFqb25bcJfU80I08FAEkspybHJoOJbTfc%2FCoK4ZEe1vozrLfjq9Dfs2X42lXYJUnGyJi%20eJFcIvDOZINfUJtZF81UttQPqGh3kPEVQTVWItcA67vr3TNP%20WeEN22%20bXT7AER4Z2z2hsmst3QN4FxVwxvTJQoSn0PzSIu7GDixipPk0cwhm3SBk3Vu9L4HLMaXYQ%3D%3D&q=Mon%20Jan%2019%2018:05:39%20PST%202026


Transistor selection example

• Suppose we want a transistor that can handle 150 V, 4 A, 60°C rise

• Try Fairchild FQPF7N20L: 200 V, 5 A leaves some margin
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Attempt 1: No heat sink

• No heat sink: use junction-to-ambient 
thermal resistance
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Attempt 2: Add a basic heat sink
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Aside: Thermal interface material
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Metal-to-metal interface 
(transistor to heat sink) doesn’t 
make good contact

Add thermal interface material 
to fill the gaps



Attempt 2: Add a basic heat sink
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Attempt 3: What size heat sink do we need?
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That’s a really big
heat sink!



Transistor selection takeaways

• Often, datasheet current ratings assume an unrealistic cooling 
scenario

• Choose bigger transistor!

• Other ways you can decrease thermal resistance:
• Increase heat sink size

• Extra copper area on PCB

• Forced-air cooling (fan)

• Liquid cooling
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Thermal vias

• Conduct heat to other side of the board
• 10mil via from previous example: 180 °C/W

• May need many vias!

• Bottom-side-cooled packages: heat sink on other side of board
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Quick review

• High voltage: add more space

• High current: make conductors bigger
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“I’ll just make my whole 
board really big!”



What if we make the whole board big?

36

plenty of 
space

around 
high 

voltages

plenty of 
space for 
big traces

plenty of 
space to
make big
parasitics 

plenty of 
space to
make big
parasitics 



Parasitic inductance

• If di/dt is high, parasitic inductance will see a high transient voltage

• KVL means that something else (e.g. a switch) will also see this 
unwanted transient voltage
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Parasitic inductance

• Oscillates with circuit’s capacitance, creating noisy ringing
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L = 1.6 nH L = 0.4 nH

https://epc-co.com/epc/Portals/0/epc/documents/papers/optimizing%20pcb%20layout%20with%20egan%20fets.pdf

https://epc-co.com/epc/Portals/0/epc/documents/papers/optimizing%20pcb%20layout%20with%20egan%20fets.pdf
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Switching induces high di/dt
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Top switch 
conducts all 
current

Top switch 
conducts no 
current

High di/dt during 
switching transitions!



Reducing parasitic inductance

• Inductance is larger when loop area is larger
• More space to link magnetic flux!

• Want to minimize space between current and its return path
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Example 1: Large loop area

• Components on top layer, return path on bottom layer

• Loop area includes full thickness of board

• Large parasitic inductance :(

41E. Persson, “Optimizing PCB Layout for HV GaN Power Transistors,” IEEE Power Electronics Magazine, June 2023.



Example 2: Small loop area

• Components on top layer, return path on layer 2

• Loop area does not include full thickness of board

• Small parasitic inductance :)

42E. Persson, “Optimizing PCB Layout for HV GaN Power Transistors,” IEEE Power Electronics Magazine, June 2023.



Parasitic capacitance

• Can introduce noise

• Want to minimize at high-frequency, high-voltage nodes
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Keep conductor area small!



Other Practical 
Considerations
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High-power connectors

45

Voltage: is connector rated for it?
(i.e. are terminals far enough apart?)

Current: is connector rated for it? 
And can chosen wire gauge fit in 
holes?



High-power connectors
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Wire to board
Screw wires in directly
Must unscrew every time you move 
the board :(

Plug and socket
Two pieces that connect
Easy to plug and unplug! :)



Test points must be hands-off

Rings

• Clip a probe on

• Separate ground lead

Coaxial

• Stick probe in

• No ground lead
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Conclusions

• Ensure sufficient space around high-voltage nets

• Ensure sufficient conductor area for high currents

• Build thermal circuit models for high-current components

• Minimize parasitic inductance and capacitance

• Consider practical testing needs in board design
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